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Velocity dependent invariants for hard particles in 
one dimension 

Ch Foidl and P Kasperkovitz 
Institut fur Theoretische Physik, Technische Universitat, Karlsplatz 13, A-1040 Wien, 
Austria 

Received 25 April 1988 

Abstract. The relative motion of N impenetrable mass points in one dimension is shown 
to be equivalent to a billiard in a simplex of N - 1  dimension, the orientation of the 
confining hyperplanes being fixed by the mass ratios. The discrete group generated by 
reflections in these planes and its closure in SO( N - 1) are used to show that the only 
invariant functions of the particle velocities are total momentum and total energy, if N > 3 
and at least one mass is different from the others. 

1. Introduction 

For a long time systems of hard particles which move on a line or ring and interact 
through elastic collisions have been studied to get more insight into the foundations 
of statistical mechanics. Results for finite systems ( N  < 00) of identical particles ('rods') 
can be found in Kasperkovitz and Reisenberger (1985a) and the references cited therein. 
These systems are known to be integrable, i.e. the motion of the N particles is equivalent 
to the free motion on a torus. There are two ways to establish this equivalence. The 
first approach is to consider the hard-core potential as the limit of the repulsive potential 
V, (x )  = g/sin x for g 3.0. Linear chains of N particles with nearest-neighbour interac- 
tion V,, g>O, meet the criterion of integrability because they possess N linearly 
independent analytical integrals of motion which are in involution (Olshanetsky and 
Perelomov 1981). These invariants are closely related to a Lie algebra which can be 
characterised by a finite group generated by reflections (Weyl group). A complete set 
of invariants allows us, at least in principle, to construct action and angle variables 
for the system, thereby establishing the connection with the free motion on the torus 
(Arnold 1980), but to our knowledge this has not yet been done for this chain. The 
second approach to proving integrability is straightforward. Since equal masses 
exchange their velocities in a collision, the symmetric polynomials S,( V )  = Zf"=, v r ,  
n = 1, .  . . , N, are invariant under the evolution. However, these invariants are unsuited 
to determining the evolution completely because the velocities of colliding particles 
are undefined at the instant of the collision. An efficient method, not related to the 
invariants S,, to describe the evolution of phase space functions has been introduced 
by Jepsen (1965) and used in subsequent work on hard rod systems. Although initially 
considered only as a trick it anticipated the definition of action and angle variables. 
The systematic construction of these variables, described in Kasperkovitz and Reisen- 
berger (1985b), exploits the fact that the relative motion of the N particles may be 
transformed into a billiard in N - 1 dimensions. The volume of the billiard is a simplex 
from which a tiling of RN- '  is obtained by iterative reflections in the bounding 
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hyperplanes. The unit cell of the resulting periodic structure corresponds to the torus 
and the evolution appears as free motion in R N - l .  The relation to the integrable chain 
is seen in the set of reflections that leave a corner of the simplex, in which the billiard 
takes place, invariant; this group is isomorphic to the Weyl group mentioned above. 

Much less is known for systems with different masses (‘inhomogeneous systems’). 
Computer simulations have been performed for mixtures of two different masses 
(Masoliver and Marro 1983, Marro and Masoliver 1985a, b) and a mass m(# 1) in a 
bath of particles of unit mass (Omerti et a1 1986, Foidl 1987). For these systems time 
averages of various phase space functions (one-particle velocity distribution, collision 
frequency, etc) have been found to agree, for most of the runs, with the averages over 
all states having the same total momentum and total energy as the initial state (Foidl 
et a1 1987, Foidl 1987). This suggests non-existence of additional invariants besides 
total momentum and energy, at least for large systems ( N -  lo3), and favours the 
ergodic hypothesis. However, numerical simulation of three-particle systems (Casati 
and Ford 1976, Rabouw and Ruijgrok 1981) revealed unexpected discrepancies of 
time and ensemble averages. On the theoretical side Hobson (1975) showed that the 
relative motion of three hard points on a ring is equivalent to a billiard in a triangle, 
no matter how the masses are chosen, and that a third invariant exists for a countable 
set of mass ratios. Apart from three integrable systems all these exceptional cases 
belong to the class of pseudo-integrable or almost integrable systems which take an 
intermediate position between integrable and ergodic systems (Zemlyakov and Katok 
1976, Richens and Berry 1981, Eckhardt er a1 1984, Gutkin 1986). 

In this paper the results of Hobson (1975) are extended to systems with more than 
three particles. In 3 2 the dynamics of N hard particles enclosed by a massless freely 
movable box is formulated as a billiard in a tube of dimension N ;  for a fixed container 
this equivalence has been shown by Cornfeld et a1 (1982, p 152). In § 3 the reflections 
in the confining hyperplanes are used to characterise and classify those invariants 
which depend on the velocities only. The result of this discussion is summarised in § 4. 

2. Equivalence with a billiard problem 

The model considered in the following consists of N particles labelled by i = 1, . . . , N. 
The velocities of the particles, vi E R, may be combined into a column vector V E R N  
the transpose of which is VT = ( U,, . . . , v N ) .  We also assume xi  E R, meaning that the 
particles move on a straight line, and denote X or XT = (x, , . . . , x N )  as the configuration 
of the system. The particles are assumed to be enclosed by a box (or frame) which is 
rigid, massless and freely movable along the line. This device makes the first and the 
last particle interact like nearest neighbours and serves to define the volume of the 
system (cf figure 1 of Kasperkovitz and Reisenberger (1985a)). The mass of particle 
i is denoted by mi and the sequence m,, . . . , mN is called the mass distribution of the 
system. The particles are assumed to move freely until two of them, say i and it- 1, 
collide. In such an event the velocity vector V is changed into AiV where Ai is the 
following block diagonal matrix: 

A , = E ( i - l ) @ u , @ E ( N - l - i )  (1) 

E ( s )  = unit matrix of dimension s. (3) 
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It should be noted that the dynamics remains well defined if some of the masses tend 
to infinity. For instance, if m,+, t CO then U, changes into -U, + 2 ~ , + ~  in a collision while 
U , + ,  remains unchanged. Since we consider only systems where E / N ,  the average 
energy per particle, is finite the limit m, t 00 will always include the limit U, JO, i.e. 
infinite masses are always assumed to be at rest. It is intuitively clear and may easily 
be derived from the form of the matrices A,,  (1)-(3), that the infinite masses divide 
the system into subsystems consisting of finite masses which move as if they were 
trapped by fixed walls. Since these subsystems evolve in time independently of each 
other it is sufficient to consider two prototypes only: (i) m, < CO for i = 1, . . . , N and 
(ii) m, < cc for i = 1, . . . , N - 1 and mN = 00; in this case the fixed walls are formed by 
the mass mN and the massless box linked to it. 

In principle each of the particles could have its own diameter so that the hard core 
of particle i would extend from x,  - ( d , / 2 )  to x,  + ( d , / 2 ) .  This kind of inhomogeneity, 
however, does not affect the dynamics in an essential way since one may always pass 
from extended particles to point particles by a linear transformation in the positional 
variables (xl + X I ,  x2+ x 2 - ( d l  + d 2 ) / 2 ,  x3+ x3 - ( d ,  + 2 d 2 +  d 3 ) / 2 ,  etc; L +  L -  
( d l + .  . .+ d N ) ) .  Finite diameters only show up in spatial expectation values such as 
pair distribution functions or static structure factors. This topic has been discussed in 
detail elsewhere (Foidl 1986); we therefore restrict the following discussion to point 
particles. 

In the following we always consider first a system consisting of finite masses only, 
discussing the limit mN t CO afterwards whenever this is formally possible. Let the 
matrix M and the vector M be defined by 

M = diag( m, , . . . , m N )  MT= ( m l , .  . . , “). 
It then follows from (1)-(3) that 

A f M A ,  = M A f M  = M. 

These equations show that the total energy and the total momentum 

E = ~ V ~ M V  P=MTV (6) 
are conserved in a collision. In ( 5 )  and (6) we used the notation AT for the transpose 
of the matrix A and UT W for the scalar product of two column vectors. To show the 
equivalence with a billiard problem we need the matrix 

(7) L = MI” = diag( f i ,  . . . , G) = LT. 

This matrix transforms Ai  into 

Bi = LAiL-’ = E (  i - l )O bi@ E (  N - 1 - i )  = B: 

with 

b i=(  ri ) = b f  ri - A ~  ( 9 )  

A f + I ’ f =  1 

B f  = E (  N ) .  
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Equations ( 1 2 )  imply conservation of total energy E. Conservation of total momentum 
P is contained in the relation 

BiK = K ( 1 3 )  

where 

K T = ( L - l M ) T = ( J m , , .  . . ,&). 

The positions and the velocities of the particles are transformed according to X - t  Y, 
V +  W, where 

Y T  = ( LX)T = (Jm,X,, * . . , K X , )  

w T = ( L V ) T = ( J m , u l ,  . . . ,  K u , ) .  ( 1 5 )  

In these new coordinates the change of velocities caused by a collision of particles i 
and i +  1 appears now as W +  B,W. Introducing unit vectors E,, j = 1 , .  . , , N, with 
components 

mj + mj+l mj + mj+l 

we may write the spectral decomposition of B, as 

B, = E ( N )  - 2E,E T. ( 1 7 )  

This equation allows us to interpret the transition W + B, W = W - 2E, ( E f  W )  as 
reflection of the vector W in the hyperplane E f  W = 0. This transition occurs when 
the two particles approach each other before they get into contact, i.e. for E f  W > 0 
(e U, ' U I + l )  and 

ETY=O (e x, =x,+1). ( 1 8 )  

Up to now we have tacitly assumed that i ranges from 1 to N - 1 .  For the furthest 
particles, N and 1 ,  the non-vanishing elements of the collision matrix BN are ( B N ) 2 , 2 =  
. . . = ( B N ) N - l , ~ - l  = 1 and ( B N I N , ~  = - ( & V ) ~ J  = A N ,  
A N  and rN are given by (10)  with i =  N and i + l =  1 .  This collision occurs for 
E L  W >  O ( e  uN > u l )  and 

= =rN,  where 

1/2  

(e XN = X I  + L )  E ; Y = L (  mNml ) 
m N + m l  

where 

Note that all unit vectors Ej are orthogonal to the vector K. 
The region confined by the N hyperplanes (18) and (19) is a Cartesian product 

R x Z N - '  where Z N - '  is a simplex of dimension N - 1  (a triangle for N = 3 ,  a 
tetrahedron for N=4, etc). This domain has the form of a straight pipe with cross 
section ZN-', extending to infinity in the direction of the vector (14) .  Moving in this 
direction corresponds to a rigid translation of the whole system. Since K T Y  is the 
position of the centre of mass, moving normal to K corresponds to a relative motion 
of the particles which leaves the centre of mass unchanged. This kind of motion is 
limited by the fact that the particles are assumed to be impenetrable and to be enclosed 
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by a movable box of length L. To require that Y E  R x X N - ' ,  i.e. ETY<O, E l y <  
0, . . . , EL- . ,  Y < 0, and E', Y < L[ mNml / (mN + ml)]1 '2 ,  is nothing but the requirement 
x1 < x2 < . . . < x1 + L. As long as Y is in the interior of R x Z N - '  the evolution is given 
by Yr+, ,  = Y, + W,t' since the velocities contained in W do not change. If Y hits one 
of the confining planes W is changed as in a specular reflection. Along the axis of 
the tube the representative point Y moves freely 

KTYr = KT( Yo+ Wot)  (21) 
in accordance with the conservation of the total momentum P. Note that the motions 
parallel and normal to K do not interfere with each other. 

3. Velocity dependent invariants and groups generated by reflections 

Formally, the evolution of the system is described by functions Wr[  W, Y ]  and Yr[  W, Y ] ,  
t E R, whose values ( W,,  Y , )  characterise the state of the system at time t if its state at 
t = 0 has been (W,  Y ) .  A function that does not change its value along the orbits in 
phase space 

g(W, Y ) = g ( W t [ W ,  YI, YJW, Y I )  for all t E R (22) 
is called an invariant. To make a complete list of all the invariants of a hard rod 
system with arbitrary masses is still an open problem. However, it is possible to classify 
those invariants that do not depend on the position variables. These functions satisfy, 
by definition, the following equation: 

(23) 
Examples of such invariants are the total momentum, P = KT W, and the total energy, 
E =iWTW. Equation (23) is obviously satisfied if 

i (  W )  = a Wr[ W, YI)  for all t E R and all Y E  R x E N - ' .  

i?( W )  = i ( B i W )  for i =  1, .  . . , N. (24) 
That this condition is also necessary for (23) to hold, if g" is continuous, can be seen 
as follows. Since g' is continuous we may assume without loss of generality that 
wi # wi+l in the argument. Moreover we may choose Y in such a way that the particles 
i and i + 1 are arbitrarily close to each other. Therefore these particles will either 
collide next ( wi > w ~ + ~ ,  t > 0) or else they took part in the last collision ( wi < w ~ + ~ ,  t < 0); 
in both cases W, = BiW and (23) yields (24) for this transformation Bi .  

The same reasoning applies for time averages 
r" 

y ) = r l ~ ~ z , I _ r , d t g ( W , [ W ,  YI,  yrrw, YI )  (25) 

which obviously satisfy (22). If such an average turns out to be independent of the 
initial configuration Y, then the function g( W, Y )  = g"( W )  has to satisfy (24). 

The equivalence of (23) and (24) may also be described in terms of ensembles. 
The smallest stationary ensemble containing the subset R x X N - '  x { W }  is R x X N - '  x 
{GWIGE Ce} where 

In this proposition R may be replaced by a singleton set {xCM} if P = KTW = 0. 
To classify these stationary ensembles and the invariants (24) as functions of the 

masses m, ,  . . . , mN we have to determine the structure of Ce as a function of these 
parameters. It follows from the very definition of Ce that it is a countable group 

Ce = matrix group generated by B 1 ,  . . . , BN. (26) 
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generated by a finite number of elements of order two (see (12)). Groups of this kind 
have been studied for a long time (Coxeter and Moser 1965, Hiller 1982) and it has 
been shown that the cardinality of these groups is uniquely determined by the orders 
of those group elements that are formed by a pair of generators. In the present case, 
BIBJ is of order two if i # j f 1 (modulo N ) .  If no special relations between the masses 
m,, m,,,, M , , ~  are assumed to exist the element BIB,+, will be of infinite order and 
hence ie will be a countable group. As will be shown later, 9 is an infinite group even 
if all elements B,B,+, (indices modulo N) are of finite order, the only exceptions being 
the free homogeneous system ( m ,  = . . . = m N - ,  = mN <CO)  and the homogeneous system 
with fixed walls ( m ,  = . . . = mN-, < mN = C O ) .  

However, these results do not give much insight into the problem at hand. For if 
% is infinite it is obvious that the set {GW,I G E %} must have accumulation points on 
the reduced energy surface {E = E,} n { P = Po}; but proving the infinity of 9 along 
the lines of Coxeter and Moser (1965) and Hiller (1982) does not tell us how many 
of these points exist nor where they might be located. Moreover, it is impossible to 
infer from this proof whether the set {GWoI G E %} is contained in a proper closed 
subset of the sphere 

s,”-’= { wI wTw = w,’w,, K ~ W  = K ~ w , }  (27) 
which would indicate the existence of constants of motion in addition to total energy 
and total momentum. In the present context it is therefore more useful to investigate 
the status of 3 as a subgroup of O(N),  the symmetry group of the energy surfaces 
E = WTW = constant. Because of (13) % is actually a subgroup of that subgroup of 
O( N )  which leaves K invariant. To make this fact more transparent we pass from the 
variables W, Y to new variables U, 2 which are essentially the well known Jacobi 
coordinates (Blochinzew 1953, p 532). 

U = R T W  Z =  RTY R ~ R  = R R ~ =  E(N)  

for i < j  
RI, = (M,+l/M,)1/2 for i = j  i“ - ( m l m J /  MJM,+1)”2 for i > j  

j = l ,  . . . ,  N-1 

j = N  R,,N = (ml/Ml)1’2 
N 

i = k  
M k =  m,. 

Under this transformation the matrices B, are transformed into the matrices 
c, = R ~ B , R  = cf 
i =  l , . .  . , N - 1  C, = E ( i - 1) 0 c, 0 E ( N - 1 - i )  

& + y : = l  2 
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the last component of U is not changed by any of the transformations Ci. The 
group Z, 

Z = matrix group generated by C1, . . . , CN (39) 

is therefore considered as a subgroup of O( N - 1 )  

O( N - 1)  = group of orthogonal matrices leaving zN  invariant (40) 

which is the symmetry group of the ( N  - 1)-dimensional sphere (27). For technical 
reasons we first study the group 

X = matrix group generated by C1, . . . , CN-,  (41) 

and discuss its extension Z (2 3) afterwards. 
The group a( N - 1) is one of the classical Lie groups. The groups X and X are 

subgroups in the algebraic sense, but in general not topological subgroups of O( N - 1 ) .  
The smallest analytical subgroup containing X is the group 

%? = closure of x (42) 

which is considered as the topological subspace of the topological space O(N - 1 )  
(Cohn 1961, pp 39, 53, 123, 127). This group contains a normal subgroup 

go = identity component of %? (43) 

%?/go= 9 (44) 

which is both open and closed. Therefore the factor group 

is discrete and, since O( N - 1) is compact, even finite. Keeping in mind that the sphere 
may be identified with the homogeneous space YO( N - l)/YO( N - 2) we there- 

fore arrive at the following picture. The set {HWoI H E X }  is a dense subset of the set 
{RWo) R E %?} which consists of a finite number of disjoint subsets of S,"-'. 

The result obtained up to now holds for any subgroup of O( N - 1). However the 
definition of 2 by means of generators, (41), and the special form of these matrices, 
(33)-(37), admit only two possibilities: either %?= O ( N -  1 )  and {HWoIH E X }  is dense 
in SF-*; or 2 = X is a finite group and {HW,/ H E X }  consists of a finite number of 
points on s,"-~. 

s N - 2  

To prove this proposition let us consider the Lie algebra of 2, i.e. 

h = Lie algebra of %?E so( N - 1) .  (45) 

The elements of h are closely related to infinite cyclic subgroups of X.  For if H is 
the product of an even number of generators C, then det H = 1 and H corresponds 
to a set of finite rotations, simultaneously performed in two-dimensional subspaces 
orthogonal to each other. If H is of infinite order then each neighbourhood of the 
unit matrix E ( N )  contains infinitely many powers of H. The cyclic group generated 
by such a transformation H is embedded in a one-parameter subgroup of R0= 
{exp L I L E  h }  if we pass from X to 2. Thus h # 0 if X contains at least one element 
of infinite order. On the other hand, if h = 0 then go = { E (  N ) }  and X is finite because 
9- X in this case and 9 is a finite group. 
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The form of the algebra h, which determines the group go, emerges from the fact 
that the mappings L + C,,LC,,, L E  h, n E { 1, . . . , N - l}, are automorphisms of h because 
C,, E 2 and Po is a normal subgroup of 2. To discuss these automorphisms let us 
consider first the transformations L+ C,LC,, for the elements L E  so( N - 1). This 
algebra consists of all real skew-symmetric matrices of the form 

M =G@E(l). (46) 
In the following discussion we shall consider only the submatrices M of the matrices 
M = L, C,,, . . . , but retain the symbols L, C,,, . . . , to avoid a clumsy notation. With 
these conventions it is obvious that the matrices L,,,, i E { 1, . . . , N - 2 } ,  i < j < N, with 
elements 

( & , I )  k,/ = St,kS~,/  - St,/SJ,k (47) 
form a basis of so( N - 1). Under the mapping L + C,,LC,, these matrices are either 
invariant or transform according to the following rules ( j >  i+ 1): 

Moreover 

CiLi,j,,Ci = -Lj,j+l. , (50) 

As the coefficients yn  are positive (cf (36)) it is possible to obtain from one element 
Li,j all the others by applying the transformations L-, C,,LC, and forming suitable 
linear combinations. In the generic case, where no special relations exist between the 
masses mi, the matrix 

DN -2, N - 1 = CN -2 CN - 1 = E ( N - 3 )  @ d~ -2, N - 1 (51) 

is a finite rotation of infinite order ($  # rational multiple of 2 ~ ) .  The closure of this 
cyclic group is {exp ~ L N - ~ , N - I  / A  E R }  so that LN-2,N-I E h ;  because of (49), (50)  and 
C,,hC,, = h, this entails h = so( N - 1) and hence 2 = O( N - 1). 

It remains to discuss what happens if DN-2,N-I is of finite order but h #  0. We 
now show that also in this case the whole algebra s o ( N -  1) may be generated from 
one element L E  h, L f 0. If h # 0 then there exists an element L ( ] )  = 2 Ai,jLi,j with 
Ai,j = A ( l )  # 0 for some pair i, j .  Applying a series of transformations L+ C,LC,, 
n = a ,  b,. . . , z, to L ( l )  we obtain an element L,2)=A(2,L1,2+. . . with 
yz, . . . , ybyaA( l )  # 0. From L(2)  we pass to the matrix Lc3) = L(*) - ClL,2,Ct whose 
definition implies CIL(,)Cl = -L(,,. The matrix L(3) has the form 

( 5 3 )  ) 
A ( 3 )  - Y l F  

L(3) = - 4 3 )  (1 + S d 5 '  (8, -(1:8,)C O ( N - 3 )  

where A ( 3 )  =2A, , )#O (cf (50 ) ) ,  O ( N - 3 )  is the null matrix of dimension N - 3  and 
ST= ( 5 , , .  . . , 5N-1)  is a vector depending on L ( l )  and the way L(2) has been obtained 
from L ( l ) .  
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To show how to get rid of f ,  i f f  # 0, we introduce matrices C!r ) ,  r E (0, 1, . . . , N - 2}, 
and groups %''r) by the following definitions: 

i >  r Ci = E ( r ) O C j "  (54) 

( 5 5 )  

These equations show that the group %''r) is generated by block diagonal matrices of 
dimension N - 1 - r which contain the two-dimensional matrices c ~ + ~ ,  . , . , cNvl  in the 
appropriate places. It will be shown below that these matrix groups are irreducible, 
i.e. there exists no orthogonal matrix that transforms all matrices H'" E X'r' into block 
form. For r = 2 this result implies that, given a vector f # 0, we can always find matrices 
H','), H i 2 ) ,  . . . , H$L3 such that 

5Y'r) = matrix group generated by Cy!l, C1Y2, . . . , c'r) N-l .  

s=l s = 1  

for, if 5Y'2) is irreducible and f # 0, there exist matrices H y ' ,  . . . , H$)-3 such that the 
vectors 

qs = Hj2'f ~ = l ,  . . . ,  N - 3  (57) 

span the carrier space of 2"). With respect to this basis f has the representation 

S = l  

If the vectors Jf are reciprocal to the vectors is, 

and 
N -3 

5 =  c 5 s  

then 
N - 3  

fT5= c K,. 
s=l 

If this sum is different from 1 then relation (56) is satisfied; if it happens to be equal 
to 1 then we have to look for a new basis. If we transform the basis (57) with a matrix 
H'2' E 5Y9(2) e obtain instead of (58) and (61) the following equations: 

N - 3  
&TH'2'5 = 1 K,[ H'2' ] .  

s = 1  

Next we choose a vector x E R N - 3  such that 

Now let us assume that 
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Since the carrier space of X ( 2 ) (  = R N - 3 )  is irreducible it is spanned by the vectors 
H'') E X'2) ,  or equivalently by the vectors H'2'& - x ,  H") E X"), x fixed. The irreduci- 
bility of X'2)  and (65) imply 5 = 0, contrary to what has been assumed in the beginning. 
It is therefore always possible, at least after a suitable transformation of the basis 
chosen initially, to find matrices Hi2' ,  . . . , E X ( 2 )  such that (56) is satisfied. 
Assuming such a set to be given we can form the matrix 

N -3 

L(4) = 4 3 )  - KsHsL(3)Hs = A ( 4 ) L I , 2  (66) 
s = l  

where A(4)  = (1 - K ) A ( ~ )  # 0. Having now obtained the matrix L1,2 E so( N - 1) we may 
generate the remaining basis elements by means of (49). 

It remains for us to prove that the matrix groups X'r' are irreducible. We do this 
by induction. Assume that X ( r )  is irreducible; then a real symmetric matrix commuting 
with C!?,, . . . , CsLl and hence with all matrices H ' " E  X ( r )  has to be of the form 
aE(  N - 1 - r), a E R. Considering now the direct sum of the identical representation, 
H(' )+ E(1), and the defining representation, H"' + H'", we see that a matrix commut- 
ing with all matrices E( l )@H'" ,  H'"E X( r ) ,  has to be of the form bE( l )@ 
a E ( N -  1 - r). This matrix commutes with Cy-') if and only if a = b (cf (34) and 
(36)). Therefore the matrix group X ' r - l )  is irreducible if the matrix group X ( r )  has 
this property. Now X ( N - ' )  is one dimensional and thus trivially irreducible so that 
all matrix groups X ' N - ' ) ,  . , . , 2") are irreducible. This concludes the proof that h # 0 
implies h = so( N - 1). 

Therefore, if go # { E (  N ) }  then go = Y O (  N - 1) and 2 = O( N - 1) since 
det C, = -1. Inclusion of CN into the set of generators does not change this result 
since CN E O ( N -  1). The same holds in the limit m, t CO where 

R + E ( N )  

CN-' = BN-' =diag(l , .  . . , 1, -1, 1) 
c, + BI(6 + A , ,  Yz + rl) 

(67) 
CN = B N  = diag(-1, 1, . . . , 1) 

and all the arguments used before apply as well. 
We now have to discuss the structure of X if h = O .  In this case go= { E ( N ) }  and 

$?= 9 is a finite group which coincides with X since X is dense in 2. The group X 
is then a finite group generated by reflections. These groups have been classified a 
long time ago (Coxeter and Moser 1965), where it has been shown that their structure 
is uniquely determined by the order of the finite rotations formed by pairs of generators 

(C,C,)"~~ = ( B,B,)Pl~~ = E (  N ) .  (68) 
The transformation B,B, is a rotation in the plane spanned by the vectors E, and E,, 
(16), the angle of rotation being twice the acute angle between the reflecting hyper- 
planes: 

- E T 4  = COS(V/P~,,) .  (69) 

PI,, = 2 for i + l < j .  (70) 

It follows both from (8) and (16) that 

If this condition holds for the N - 1 generators and if N >  3 the group has to be 
isomorphic to one of the following groups: the symmetric group Y N  (order N ! )  or 
the hyperoctahedral group (order 2 N - ' ( N -  1) !), In both cases 

Pl,l+l = 3 for i =  1 , .  . . , N - 3  (71) 
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and therefore 

( -E?E,+ l ) -2  = [cos(~/3)1-*  = ( 1  + m , + , / m , ) ( l  + m,+l/ml+z) = 4 

for i = 1 ,  . . . ,  N - 3 .  ( 7 2 )  
Using these equations we can express the mass ratios m 1 / m 2 , .  . . , mN-2/"-1 as 
functions of one single ratio m, /  m,+ , .  Note that ( 7 2 )  admit only configurations where 
the masses, if they are different, are arranged in a monotonic sequence, i.e. m ,  < m2.  . . < 
"-1 or m ,  > m,.  . .> "-1. If 2%'=5J" (71)  and (72) have to be supplemented by 
the equations 

P N - Z , N - I  = 3 (73) 

( 1  + mN-l/mN-2)(1 + "+I/ mN) = 4. (74)  
Because of (74)  mN has to follow the monotonicity of the preceding masses 
( m ,  <. . . < or m,  = .  . . = " ) .  If X = f l N - ,  one has, instead of 
(73) and (74 ) ,  the following relations (cf ( 6 9 ) ) :  

or m,  > .  . .> 

P N - Z , N - I  = 4  (75) 

( 1  + "-I/ m N - J (  1 + m N - , / m N )  = 2 .  (76)  
If we resolve (76)  for "-l/"-2 we see that in this case there are only two possibilities 
for the mass configuration, namely either m, >. . . > "-1 and "-1 < mN <CO or 
m ,  = . . . = "-1 and m, = W. In any case we are left with a one-parameter family of 
matrix groups whose members are uniquely fixed by the value of the mass ratio 

P = "-I/ m ~ .  (77) 
The generators C,(p)  and C,(p') of two members of the one-parameter family are 
related by an orthogonal transformation and the same holds for the corresponding 
matrices B,: 

B , ( p ) =  U(P,  II.')B,(w')U(CL, W t l T  for i = l , . , . , N - 1  (78) 

U(P,  P')U(PL, p'IT= U ( P ,  / 4 T U ( P L ,  P ' )  = E ( N ) .  (79)  
This result follows from the following facts. (i)  As can be seen from their spectral 
decomposition (17) the matrices B, are uniquely determined by the vectors E, .  (ii) 
The unit vectors E , , .  . . , EN-, and K/IKI form a basis of R N .  (iii) The angles between 
these vectors depend only on the structure of the abstract group to which % ( p )  is 
isomorphic and not on the value of the parameter p (cf (69 ) ) .  The transition from p 
to p' is therefore performed by means of an orthogonal transformation U which is a 
continuous function of both p and p' because the basis vectors E , ,  . . . , K/IKI depend 
continuously on the mass ratios. 

If we extend the finite group 2%' by including the matrix CN into the set of generators 
we obtain, in general, an infinite group X which is dense in O(N - 1). For if the 
parameter p does not fix the mass ratios in a very special way the rotations CNCl and 
CN-ICN will be of infinite order and h', the Lie algebra of %', will therefore be 
non-empty. But even if these rotations are of finite order we see from the arguments 
used before for 2%' that here too there are only two alternatives: either h' # 0 and 
%' = O( N - 1)  or h' = 0 and %' = X is finite. In the latter case there are again only 
two possibilities: either CN & 2%' and %" is a proper extension of 2 or C N  E X and 
X = 2%'. As will be shown immediately only the second case can be realised for the 
matrix groups considered here. 
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It follows from the definition of the generators Bi that 

BiBN = BNBi for i #  1, N - 1  (80) 

Pi, N = 2 for i #  1, N-1. (81) 

or, in the notation of (68), that 

The only extensions of 9, compatible with condition (81) are Y,,, and Q N .  If %?= YN 
and 2V = YN+, then either 

P1,N = 3 ( l + m l / m N ) ( l + m l / m 2 ) = 4  (82) 

P N - I , N = ~  [ ( I  + "/mN-I)(l+ "/ml)l-' = 0 (83) 

P1.N = 2  [ ( I  + m,/mN)(l  + m,/m,)]-' = 0. (85) 
For the mass distributions considered here O <  m, <OO for i < N. These conditions 
show that (85) can never be satisfied. Likewise the only solution of (83) is = 00; 
but this implies m ,  <. . . < mN-, < = CO which contradicts (82). Analogous reason- 
ing eliminates the possibility %?= YN, 2V = ON in which case (82) has to be substituted 
by 

P 1 , N  = 4  (1 + m , / m N ) ( l  + ml/mz)  = 2 (86) 

P N - I , N  = 4 (87) 

and (84) by 

(1 + m N / m N - , ) (  1 + m N /  ml)  = 2.  

If %=ON- ,  then condition (80) admits only the extension 2V=QN,  In that case the 
necessary conditions for the new generator are again (82) and (83). Here too the 
solution of the second of these equations is MN =a, but this now entails 
mN-,  =. . . = m, = m1 (cf (72) and (76)) and again violates (82). 

If CN E X then it must be possible to represent CN as a product of the generators 
C,, . . . , CN-,. For %?= 9, this relation is 

CN = c, c, . . . C N - 2  CN-1 CN-2. . . c2 c, . (88) 

The corresponding relation for BN is easily verified for p = 1 ( m ,  = . . . = <a) by 
direct calculation. Because of (78) the same relation between the group element BN(p)  
and the generators B , ( p ) ,  . . . , B N - , ( p )  has to hold for all values of p for which 
B N ( h )  E %?(p). If the matrix on the RHS of (88) is multiplied by C, from the right the 
resulting matrix is of order three as can be seen again from the matrix group 3 for p = 1: 

PN,I = 3 ( l + m , / m N ) ( l + m , / m , ) = 4 .  (89) 
This equation excludes inhomogeneous mass distributions with m, < . . . < mN or m,  > 
. . . > mN,  so that 93% X =  X= YN if and only if the system is homogeneous and 
m, COO.  Equation (88) is also valid if CN E %? and %?=ON-, for the corresponding 
relation holds for the B in the case p = 0 ( m ,  = . . . = = 00). If relation (88) 
holds true for p = 0 it has to be valid whenever B N ( p )  E 3 ( p ) .  It then follows from 
(88) that ( BNB1)4 = E (  N ) ,  i.e. 

< 

PN,1 = ( 1 + m l / ~ N ) ( l + m l / m 2 ) = 2  (90) 

which shows that in this case the mass distribution has to be ml = . . = "-1 mN =a. 



Velocity dependent invariants for hard particles 405 1 

All these considerations apply also to the three-particle system except that X can 
be finite without being isomorphic to 9',( = 9,) or Cl,( = 9J. For this system the simplex 
8, is a triangle with acute angles, one of which becomes a right angle in the limit 
m3 f 00. Whenever these angles are rational multiples of T the group 24 is isomorphic 
to a dihedral group of finite order and the system is pseudo-integrable. 

4. Conclusions 

The results of this paper may be summarised as follows. In § 2 we showed that the 
relative motion of N hard rods is equivalent to a billiard problem in a properly chosen 
simplex of dimension N - 1. If the N hyperplanes confining the simplex are translated 
into the origin then the group '3 generated by reflections on these new hyperplanes 
characterises the set of velocities that can occur in the system in the course of time. 
The corresponding vectors WT = (&U,, . . . , &U,) E R N  lie on a sphere S,"-' 
which is uniquely determined by the total energy Eo and the total momentum Po of 
the system. The symmetry group of this sphere is the orthogonal group O( N - 1) and 
the group '3 is a countable subgroup of it. The main result of 0 3 is that '3 is dense 
in O( N - 1) or finite. For N > 3 the second case occurs if, and only if, all masses are 
equal, with the possible exception of one infinite mass which then acts like a pair of 
fixed walls enclosing the other particles. In these exceptional cases the system is known 
to be integrable and there exist N analytic invariants which are polynomial functions 
of the velocities only. Moreover iterated reflections of the simplex Z N - '  in its confining 
hyperplanes results in a tiling of RN-'  which can be used to construct action and angle 
variables for the relative motion. This construction breaks down in the generic case 
where no special relations between the masses exist. In this case our result shows that 
the only continuous invariant functions of the velocities are total energy and total 
momentum. This holds true whenever the system contains at least two different masses, 
no matter how small this difference may be and which special relations exist between 
the N masses. These results-as well as computer simulations of inhomogeneous 
systems-lead us to the conjecture that inhomogeneous hard rod systems (with more 
than three particles) are ergodic. 
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